
Object Oriented Analysis & Design with UML
Duration: 4 days (Face-to-Face & Remote-Live), or 28 Hours (On-Demand)

Price: CDN$2,775 (Face-to-Face & Remote-Live), or CDN$1,995 (On-Demand)

Discounts: We offer multiple discount options. Click here for more info.

Delivery Options: Attend face-to-face in the classroom, remote-live or on-demand
training.

Students Will Learn

Extracting a system's requirements
using a use-case driven approach

Leveraging the experience of experts
by applying analysis and design patterns

Defining a set of extensible, reusable
software classes (a class library) for the
problem domain

Building interaction diagrams that
define the interactions among the
objects that are required to achieve the
desired system behavior

Defining a set of candidate classes
that suitably model a problem domain

Establishing metrics, peer reviews and
heuristics to improve the quality of the
object models

Effectively documenting all phases of
the software process using UML

Applying an iterative and incremental
approach to construction of software
systems and components

Course Description

This OOA&D training course presents the key concepts and methodologies required to
perform quality object-oriented software engineering, with particular attention to practical
techniques such as use-case and CRC analysis, UML diagramming, and patterns. Students
practice applying object oriented analysis during the course to improve software designs
and to see how software objects can be altered to build software systems that are more
robust and less expensive. Students use several methods for analyzing software systems,
finding and refining useful classes and relationships between objects. Care is taken not to
focus on any one language so that all students can participate in the design exercises
without relying on specific programming skills. The course emphasizes the most practical
analysis and design methods, including the application of use case analysis, CRC analysis,
problem domain analysis, activity diagramming, interaction diagramming, and class
diagramming. The Unified Modeling Language (UML) is presented in detail and is used in
the exercises and case studies. Practical aspects of project management and
implementation are presented from the perspective of experienced object system
designers. Special emphasis is given to the use of object patterns in developing software
systems. The students apply their skills in labs that are mini design sessions, during which
the instructor helps the students identify and overcome common obstacles that occur

https://www.traininghott.ca/Discounts.htm
https://www.traininghott.ca/Remote-Training.php
https://www.traininghott.ca/On-Demand-Streaming.php
https://www.traininghott.ca/On-Demand-Streaming.php

during group sessions.

Course Prerequisites

Knowledge of structured programming concepts.

Course Overview

The Object Paradigm

Objects and Classes
Abstraction and Encapsulation
Methods and Messages
Interfaces, Inheritance, and
Polymorphism
Access Control
The Business Case for OO
Development

Managing and Participating in the
OOA&D Approach

Information Gathering Techniques
Group Orientated Problem Solving
Brainstorming, Role-Playing
Managing Complexity via the
"Iterative and Incremental" Approach
Managing Design Sessions
Design vs. Implementation
Quick Prototyping
Validation and Quality

Diagramming & Notational Techniques
Using the UML

Overview of Analysis and Design
Phases
UML Notation
Analysis Diagramming Techniques
Design Diagramming Techniques
Generalization/Specialization
Aggregation and Composition
Association, Cardinality, Navigability
Package and Deployment Diagrams
Icons, Relationships, and Adornments

Requirements and Analysis Phase

System Functions, Features and
Constraints
Behavioral Analysis
Domain Analysis
Identifying Use Cases
Use Case Descriptions
Using CRC Cards
Containment and Composition
Referential Aggregation
Inheritance, SubTypes and Is-A
Hierarchies
Association and Link Relationships
Diagramming System Events
State Transition Diagramming

Design Phase

Translating Analysis Concepts into
Software Classes
Optimizing Classes and Objects: The
Multi-Tiered Architecture View
Mapping System Functions to Objects
Object to Object Visibility
Collaboration Diagrams
Sequence Diagrams
Specifying Object Interfaces
Specification Class Diagrams

Patterns

Benefits of Patterns
Using Patterns During Analysis
Using Patterns During Design
Design Patterns (Gang-of-Four
Format)
GRASP Patterns
Model-View-Controller Pattern
Persistence Patterns
Patterns as Internal Documentation

Design Refinement

Designing for Extensibility

Project Management and
Implementation Issues

Designing for Reusability
Partitioning the Class Space
Checking Completeness and
Correctness
Testing Business Processes
Design Metrics
Discovering Reusable Patterns

Planning for Reusability
Transition Strategies and Planning
Legacy System Integration
Managing the Development Cycle
Partitioning Work
Source Code Organization
Choosing Tools and Languages
Software Quality Metrics

OO Languages and Tools

Survey of OO Languages
The Role of Class Libraries
The Role of OOA&D Tools

Advanced Design Concepts

Expanding Inheritance Hierarchies
Abstract Classes and Virtual Methods
Overriding and Overloading
Multiple Inheritance
Interface versus Implementation
Inheritance

Persistent Object and Database Issues

The Coad Data Management Domain
Object Persistence
Object-Orientated Database
Management Systems (ODBMS)
Object Orientated versus Relational
Databases
Mapping Objects to Relational Data
Structures

Hands On Technology Transfer
The Best Way to Transfer Technology Skills

1 Village Square, Suite 8
14 Fletcher Street

Chelmsford, MA 01824

Copyright © 2021 Hands On Technology Transfer, Inc.

	Local Disk
	Object Oriented Training | OOAD Course | Learn UML

