
TDD Course C# | Refactoring Legacy Code | Test Driven Development Training

file:///INSTSERVER/TrainingHottSite/HOTT-NEW/Canada/CoursesPDF/Refactoring-Legacy-Code-C-Sharp-Course.htm[8/27/2021 10:32:37 AM]

Test Driven Development (TDD), and Refactoring Legacy Code
Using C#
Duration: 4 Days (Face-to-Face & Remote-Live), or 28 Hours (On-Demand)

Price: CDN$2,775 (Face-to-Face & Remote-Live), or CDN$1,995 (On-Demand)

Discounts: We offer multiple discount options. Click here for more info.

Delivery Options: Attend face-to-face in the classroom, remote-live or on-demand
training.

Students Will Learn

Agile development and the test-driven
development paradigm

Creating tests from use cases and/or
Agile methodology

Unit testing using NUnit and Visual
Studio

Testing code that interacts with
databases

Using mocks, fakes, and stubs

Automating tests, builds and check-ins
using a continuous integration server

Refactoring existing code to improve
clarity, readability and maintainability

Identifying patterns useful in TDD
including the SOLID principles

Identifying and eliminating
dependencies that make code difficult to
maintain and extend

Tracking code coverage and analyzing
other code metrics to improve code
maintainability

Using the seam model to identify
appropriate places in the code to make
changes safely

Identifying and correcting various
types of code smells

Using effect sketches and pinch points
to identify optimal places for tests

Using feature sketches to identify
opportunistic refactoring

Course Description

This course provides students with hands on experience learning Test Driven Development
(TDD) using NUnit and Microsoft’s Visual Studio. Students will build unit tests using mocks,
fakes, stubs and drivers, and address issues working with databases and other systems.
Students will create tests and code that will be more likely to meet and exceed
requirements. Code that receives “test coverage” will not break existing systems, because
tests are passed before code is checked in.

Students will spend time working with the issues involved in refactoring legacy code, safely
cutting into an already deployed system. Students will work on looking for, or creating

https://www.traininghott.ca/Discounts.htm
https://www.traininghott.ca/Remote-Training.php
https://www.traininghott.ca/On-Demand-Streaming.php
https://www.traininghott.ca/On-Demand-Streaming.php

TDD Course C# | Refactoring Legacy Code | Test Driven Development Training

file:///INSTSERVER/TrainingHottSite/HOTT-NEW/Canada/CoursesPDF/Refactoring-Legacy-Code-C-Sharp-Course.htm[8/27/2021 10:32:37 AM]

“seams” to more safely improve code or add features, and work on identifying “code
smells” that need attention in a productive system. Finally, students will explore
dependency issues as well as techniques to better understand and improve complex
systems.

Comprehensive C# labs thoughout the course provide facilitated hands on practice crucial
to developing competence and confidence with the new skills being learned.

Course Prerequisites

C# programming experience and an understanding of object-oriented design principles.
HOTT's Learning to Program with C# course or equivalent knowledge provides a solid
foundation.

Course Overview

Why TDD? Think Twice, Write
Production Code Once

Utilizing a Safety Net of Automated
Testing
Agile Development Concepts
Eliminating Bugs Early
Smoothing Out Production Rollouts
Writing Code Faster via Testing
Reducing Technical Debt
Practicing Emergent Design
Making Changes More Safe
The Importance of Regression Testing

Basic Unit Testing

NUnit and Visual Studio
Adding Complexity to Initial Simple
Tests
Making Tests Easy to Run
The TDD Pattern: Red, Green Refactor
Using Methods of the Assert Class
Boundary Testing
Unit Test Limitations

Comprehensive Unit Testing Concepts

Using Declarative-Style Attributes
Using Constraints for More Complex
Scenarios
Using Test Categories
Exception Handling in Tests
NUnit Test Initialization and Clean Up
Methods
Writing Clean and Dirty Tests
Testing with Collections, Generics and
Arrays
Negative Testing

Mocks, Fakes, Stubs and Drivers

TDD Development Patterns
Naming Conventions for Better Code
Using Mock Objects
Using Fakes
Using Stubs
Test Doubles
Manual Mocking
Mocking with a Mock Framework
Self-Shunt Pattern

Database Unit Testing

Mocking the Data Layer
Identifying what Should Be Tested in
Databases
Stored Procedure Tests
Schema Testing
Using NDbUnit to Set Up the DB Test
Environment

Refactoring Basics

Refactoring Existing Code
Restructuring
Extracting Methods
Removing Duplication
Reducing Coupling
Division of Responsibilities
Improving Clarity and Maintainability
Test First - then Refactor

https://www.traininghott.ca/Courses/Learning-C-Sharp-Programming-Classes.htm

TDD Course C# | Refactoring Legacy Code | Test Driven Development Training

file:///INSTSERVER/TrainingHottSite/HOTT-NEW/Canada/CoursesPDF/Refactoring-Legacy-Code-C-Sharp-Course.htm[8/27/2021 10:32:37 AM]

More Complex Refactoring
Considerations

Patterns and Anti-Patterns in TDD

The SOLID Principles
Factory Methods
Coding to Interface References
Checking Parameters for Validity Test
Open/Closed Principle: Open to
Extension, Closed to Change
Breaking Out Method/Object
Extract and Override Call
Extract and Override Factory Method
Singleton Pattern
Decorator Pattern
Facade Pattern
State Pattern
MVP, MVC and MVVM Patterns
Finding and Removing Code
Smells/Antipatterns

Refactoring Legacy Code

Reducing Risk of Change

Eliminating Dependencies
Characterization Tests as a
Safety Net
Introducing Abstractions to
Break Dependencies

Analyzing Legacy Code

Identifying Pinch Points with
Effect Analysis
Identifying Seams for Expansion
and Testing
Listing Markup

Minimizing Risk of Adding New
Behavior

Sprout Method
Sprout Class
Wrap Method
Wrap Class

Dealing with Code that's Difficult to
Test

Globals and Singletons in Tests
Inaccessible Methods and Fields

Using Smells to Identify What to
Refactor

Dealing with Monster Methods
Dealing with Excessively
Complex, Large Classes
Identifying and Eliminating
Duplication
Other Smells

Dealing with Large Legacy Systems

Preserving Signatures

Code Coverage

White Box vs Black Box Testing
Planning to Increase Code Coverage
Over Time

Goal 80% or More Test
Coverage
Statement Coverage
Condition Coverage
Path Coverage

Risks Changing Legacy/Production
Systems

Refactoring
Coupling and Cohesion Issues
Taking Small Tested Steps

Hands On Technology Transfer
The Best Way to Transfer Technology Skills

1 Village Square, Suite 8
14 Fletcher Street

TDD Course C# | Refactoring Legacy Code | Test Driven Development Training

file:///INSTSERVER/TrainingHottSite/HOTT-NEW/Canada/CoursesPDF/Refactoring-Legacy-Code-C-Sharp-Course.htm[8/27/2021 10:32:37 AM]

Chelmsford, MA 01824

Copyright © 2021 Hands On Technology Transfer, Inc.

	Local Disk
	TDD Course C# | Refactoring Legacy Code | Test Driven Development Training

